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On-line Gibbs learning. II. Application to perceptron and multilayer networks

J. W. Kim and H. Sompolinsky
Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel

~Received 23 December 1997!

In the preceding paper~‘‘On-line Gibbs Learning. I. General Theory’’! we have presented the on-line Gibbs
algorithm ~OLGA! and studied analytically its asymptotic convergence. In this paper we apply OLGA to
on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee
machine, and a winner-takes-all~WTA! classifier. The behavior of OLGA for a single-layer perceptron is
studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule
corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee
machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by
output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results
reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the
studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning
rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as
that of batch learning.@S1063-651X~98!07908-2#

PACS number~s!: 87.10.1e
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I. INTRODUCTION

Most of the conventional on-line learning algorithms a
variations of the stochastic gradient descent algorithm wh
moves in the direction of the gradient descent of the inst
taneous error function@1–17#. For a sufficiently small learn-
ing rate, the stochastic gradient descent algorithm conve
to a local minimum of the generalization error. As this alg
rithm relies on differentiating the error function, it is inap
plicable to learning Boolean functions or other discrete v
ued functions which are extremely useful for decision a
classification tasks. In a previous paper~paper I!, we have
presented a model of on-line learning, which we called
on-line Gibbs algorithm~OLGA!. This model is also appli-
cable to learning discrete valued functions. In paper I
have analyzed its general asymptotic properties and sho
that this algorithm converges in the limit of infinite numb
of examples to a local minimum of the generalization er
for both realizable and unrealizable tasks. Furthermore, w
an appropriate choice of a power-law learning rate
asymptotic convergence obeys, in general, similar po
laws as those obtained in batch learning.

Computing the one-step update of the weights accord
to OLGA may be rather complex, depending on the syst
architecture. It is therefore important to know wheth
OLGA can be readily implemented in network architectu
which are commonly used in supervised learning. In t
paper we study the application of OLGA to several netwo
architectures. Our first goal is to derive explicit update ru
for these architectures. The second goal is to study the
vergence properties of the algorithm in these systems
various target rules and to demonstrate some of the gen
results derived in paper I. The general definition of OLG
includes a temperature parameter characterizing its stoch
nature. We will focus in this paper only on the determinis
version of OLGA, i.e., its zero-temperature limit.

The outline of this paper is as follows. In the followin
section, we briefly summarize the definition of OLGA.
PRE 581063-651X/98/58~2!/2348~15!/$15.00
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Sec. III we apply OLGA to a single-layer perceptron a
study analytically and numerically its behavior for a real
able target rule as well as various kinds of unrealizable ru
The analytical studies are based on mean-field theory wh
is valid in the thermodynamic~large network size! limit. In
Sec. IV we define the OLGA update rule in the case o
two-layer network with a committee-machine architectu
We study numerically this algorithm for learning a realizab
rule and a rule corrupted by output noise. In Sec. V we ap
OLGA to the winner-takes-all~WTA! classifier. We study
numerically the case of a WTA network learning examp
generated by a network with the same architecture. In S
VI we summarize and discuss the results.

II. DEFINITION OF OLGA

We consider a learning system defined by a funct
s~s;w!, wheres is the input vector ands is the output, which
for simplicity is taken as a scalar. The target task is a r
valued functions0(s). At each presentation of an exampl
indexed by the integern, the system is given an input vecto
sn and its desired outputs0

n5s0(sn). The inputs are drawn a
random from a distributionDs. For each example there is a
error functione~w;s! which measures the dissimilarity be
tween the system outputs and the desired values0. We
denote byw the current weight vector, i.e., the weigh
evaluated aftern21 presentations of examples, and byw8
the new weight vector, which is evaluated following the pr
sentation of thenth examples5sn. Givenw ands the update
rule for evaluatingw8 is based on the energy function

E~w8uw,s!5e~w8;s!1
l

2
iw82wi2. ~1!

It is an energy function in the space of the new weightsw8
which depends parametrically onw ands. The first term inE
represents the cost incurred by the error due to the new
ample. Minimizing this instantaneous error is not a go
2348 © 1998 The American Physical Society
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strategy as it will lead to large changes in the values of
weights which will quickly erase past knowledge stored
the current weights. In order to avoid such changes we
the last term inE which prevents the system from makin
big changes in the weights at each presentation. ThusE rep-
resents a compromise between the need to satisfy the
example and the need to minimize the changes in the wei
at each step.

In general OLGA is defined as a stochastic learning ru
Given the current weights and the new randomly samp
example usingDs, the new weight vector is sampled at ra
dom with the~conditional! on-line Gibbs distribution, i.e.,

P~w8uw,s!}expS 2
b

2
E~w8uw,s! D . ~2!

In this paper we will focus on the deterministic limit o
OLGA which corresponds to the caseT51/b50. We will
consider here only caseswhere the instantaneous measure
error is binary. In this case, minimizingE implies that the
current weightw is changed only ifw does not satisfy the
new example and in addition there is a weight vector su
ciently close tow that does satisfy the new example. Spec
cally, theT50 OLGA for the binary error consists of thre
principles.

(1) Error correction. If e(w;s)50 then the minimum ofE
is clearly w85w, hence no change is made. Furthermo
whene(w;s)51, and a move is made, it will always be to
new weight vector that does satisfy the new examp
Whether such a move is performed depends on the two
lowing rules.
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(2) Minimal change. If e(w;s)51 then one has to searc
for the nearestvector tow that satisfiesthe new example.

(3) Bounded change. This new vector is chosen asw8
provided that it lies within a hypersphere centered onw with
radiusA2/l, i.e.,

iw82wi,A2/l. ~3!

Otherwise,w85w.

III. OLGA FOR A SINGLE-LAYER PERCEPTRON

In this section we apply OLGA to the case where t
learning system is a single-layer perceptron@18#,

s~w;s!5sgn~w–s!, ~4!

where boths andw areN-component vectors. It is assume
that the learned rule is also a dichotomy, i.e.,s0561. We
first define the learning algorithm. We then present analyt
and numerical results for the learning curve of this algorith
in specific cases of realizable and unrealizable target rul

A. Definition of the algorithm

We assume that at thenth step, the perceptron is given
new example in the form of an input vectorsn and a label
s0

n . Since the output is independent of themagnitudeof the
weight vectorw, we will use a version of OLGA that nor
malizes the weight vector at each step. We will show bel
that the normalized OLGA reduces to the following upda
rule:
wn5H An~wn212hn21ŝn!, 0 ,2hn21s0
n,A2/l@121/~2lN!#

wn21 otherwise,
~5!
al

q.
where the quantityhn21 is the local field of the curren
weight wn21 induced bysn,

hn21[wn21
• ŝn, ~6!

whereŝ[s/As–s, and the normalization coefficientAn is

An5~12N21hn21
2 !21/2. ~7!

The upper bound onuhn21u in Eq. ~5! holds for l.1/N. If
l,1/N there is no upper bound onuhn21u.

We now derive the above update rule. In order to mi
mize the energyE, Eq. ~1!, we measure the local fieldhn21
of the current weightwn21 induced bysn. If s0hn21.0, i.e.,
s5s0, we keep the current weightwn21. If sÞs0, i.e.,
s0hn21,0, we search aminimal new weight vectorwn

which satisfiess0hn.0. Since changing the components
wn21 which are orthogonal tosn will increase the second
term inE without contributing to the correction of the insta
taneous error, the principle of minimal change implies t
these components are unchanged, i.e.,
-

t

wn5wn211~hn2hn21!ŝn. ~8!

In order to minimize the change inw we have to makehn
arbitrarily close to zero with a sign such thats0hn>0. Sub-
stituting hn50 in Eq. ~8! yields

wn5wn212hn21ŝn. ~9!

Incorporating normalization of weight vectors the minim
weight vector is given by

wn5An~wn212hn21ŝn!. ~10!

The value ofAn is determined by requiring thatwn
•wn5N,

yielding Eq.~7! . Finally, the bounded change condition, E
~3!, reads 2/l.iDwi252N(121/An). Incorporating this re-
quirement, the updating rule, Eq.~10! is implemented if and
only if

0 ,2hn21s0
n,A2/l@121/~2lN!# ~11!
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for l.1/N. If l,1/N there is no upper bound onuhn21u. If
these conditions~11! are not satisfied,wn5wn21. Finally,
we note that for largelN the bound simplifies to

0 ,2hn21s0
n,A2/l. ~12!

The perceptron update rule is shown schematically in Fig

B. Learning a perceptron rule

We consider the problem of a single-layer percept
learning a realizable rule. The labeled examples are ge
ated by a ‘‘teacher’’ perceptron with a weight vectorw0. The
minimum value ofeg , emin , is zero if w5w0. From the
general theoretical results of paper I we expect that OL
will converge to the teacher vector for all values ofl, with a
generalization error that vanishes as 1/n. In the following we
check this prediction by solving analytically the dynamics
OLGA in the limit of largeN and by numerical simulations
These calculations are performed for Gaussian input di
bution with zero mean and unit variance^^si

2&&51. For this
input distribution, the generalization erroreg is

eg~w!5
1

p
arccos~R!, ~13!

where the overlapR betweenw andw0 is

R5
1

N
w–w0 . ~14!

We can derive the expression forDRn[Rn2Rn21 in the
largeN limit using Eqs.~5! and~7!. ExpandingAn in powers
of 1/N yields

wn'S 11
1

2N
hn21

2 Dwn212hn21ŝn. ~15!

Taking the inner product withw0 on both sides of the abov
equation yields

DRn5
1

N S 1

2
Rn21^hn21

2 &D2^hn21
0 hn21&DD , ~16!

FIG. 1. Schematic illustration of OLGA update rule for a sing
layer perceptron. The vectorsw0 and w are the teacher and th
student weights, respectively. The dashed line denotes the dec
boundary of the student. The vectors is the new input, and we show
the case ofs0(s)521; s(w,s)51. The vectorw8 is the nearest
vector which satisfiess0(s). ~a! If w8 lies within a distance ofA2/l
from w, w moves tow8. ~b! Otherwise, no update is made.
1.

n
r-

A

f

i-

wherehn21
0 5w0• ŝn andD denotes the region in the space

sn which satisfies the condition given by Eq.~12!. The aver-
age^ &D can be explicitly performed using the Gaussian s
tistics of h andh0, yielding

DRn5
1

N
F~Rn21!, ~17!

where

F~R![2RE
0

A2/l
Dyy2HS Ry

A12R2D
1

1

p
~12R2!3/2F12expS 2

1

l~12R2!
D G , ~18!

wherey represents the random variablehn21 and

H~x!5E
x

`

Dy ~19!

and Dy5dyexp(2y2/2)/A2p. Finally, in the largeN limit
we can define a continuous scaled time variable

a5
n

N
~20!

and writeDRn5dR/da, thereby obtaining the following dif-
ferential equation forR(a):

dR

da
5F~R!, ~21!

whereF(R) is defined as Eq.~18!.
The shape ofF(R) for a generall ~0,l,`! is shown in

Fig. 2. It is positive for allR,1 and monotonically decreas
ing to zero atR51. Thus Eq.~21! has a single fixed point a
R51 which implies thatR will always converge to 1 regard
less of the~fixed! value ofl. NearR;1,

F~R;1!'
2

3p
~12R2!3/2, ~22!

ion

FIG. 2. F(R), Eq. ~18!, for l50.1 ~solid line!, 1.0 ~dashed line!,
and 10.0~dotted line!.
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independent ofl. Thus the asymptotic convergence ofR to 1
is

dR512R'S 3p

2A2
D 2

1

a2
~23!

andeg vanishes as

eg~a!'
3

2a
. ~24!

According to Eq.~23!, the asymptotic behavior ofeg is in-
dependent ofl, and the power law is in accordance with th
general theory of OLGA.

The numerical simulation of this problem is shown in F
3. Each component of the initial student weight vector
drawn randomly from a uniform distribution between21.0
and 1.0 followed by a weight normalization,w–w5N. As the
figure shows, there is a very good agreement with the p
dictions of the theory.

C. Learning a perceptron rule with output noise

We now consider the case where the labels of the tea
perceptron are corrupted by a noise. The noise is gener
uniformly with the probabilityp, 0,p,0.5. The target rule
is given as

s0~s!5H 1sgn~w0•s! with probability 12p

2sgn~w0•s! with probability p.

Obviously, the optimal weight vector is stillw5w0 and
emin5p. It has been shown previously that if the input dist
bution is isotropic the conventional on-line perceptron alg
rithm converges to the teacher weights even in the prese
of output noise@15–17#. This is not the case for a gener
nonuniform input distribution. To demonstrate the advanta

FIG. 3. Generalization error of a realizable perceptron vs
inverse of the number of examples per weight,a. The number of
inputs is 50 andl51. The asymptotic convergence of the algorith
is compared with the theoretical prediction~dashed line! eg

'1.5/a.
.
s

e-

er
ted

-
ce

e

of the present algorithm we have considered the case o
input s which is randomly chosen from a Gaussian distrib
tion with a nonzero mean,

P~s!5)
i 51

N
1

A2p
e2~si2ui !

2/2, ~25!

with

Q05
1

AN
u–w0 , 0,Q0,1. ~26!

If the center vectoru is neither parallel nor orthogonal tow0,
the conventional on-line perceptron algorithm does not c
verge tow0 @15–17#.

According to paper I, in the case of learning a realiza
rule corrupted by output noise, OLGA converges tow0 in the
limit of large l. For large fixedl eg deviates from its mini-
mal valuep by an amount of the order of 1/Al. Furthermore,
when l is made to increase withn, eg approachesp by a
power law which in the optimal case (l}l0n2) is inversely
proportional withn. We first check these results using th
largeN analytic theory.

In the Appendix we show thateg(w) is given by

eg~R,Q!5p1~122p!F E
2`

2Q

DyHS 2Q02Ry

A12R2 D
1E

2Q

`

DyHS Q01Ry

A12R2D G , ~27!

whereQ is defined as

Q[
u–w

AN
. ~28!

As expected,emin5p if w5w0, i.e., R51 andQ5Q0.

1. Fixed largel

In the Appendix we derive the mean-field equations foR
andQ in the largeN limit. It can be shown that for finitel
the fixed-point value ofR is less than 1, but approaches 1
l→`. In this limit we study the asymptotic behavior ofR
andQ in the vicinity of R;1 andQ;Q0. We define

r ~a!5l@12R~a!#,
~29!

q~a!5l@Q02Q~a!#.

The equations for the scaled variables are of the form

dr

da
5l2 1/2f ~r !, ~30!

dq

da
5l2 1/2G~r ,q!, ~31!

where f (r ) andG(r ,q) are given in Eqs.~A11! and ~A12!.
The shape of the functionf (r ) is shown in Fig. 4. Because o
the form of the above equations the equation that determ

e
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2352 PRE 58J. W. KIM AND H. SOMPOLINSKY
the convergence of the dynamics is Eq.~30!. From the shape
of f (r ), it is seen that the system converges to the rootf
andG, given byr * andq* , where

f ~r * !50, ~32!

G~r * ,q* !50. ~33!

This implies that at infinite time,

12R5
1

l
r * , a→` ~34!

Q02Q5
1

l
q* , a→`. ~35!

Since from Eq.~27!

eg2p'
e2Q0

2/2

p
~122p!A2~12R!, ~36!

we obtain

eg2p'
e2Q0

2/2

3Ap

1

Al
, a→`. ~37!

The convergence to this value is exponential ina.

2. Power-law schedule forl

In order to achieve asymptotic convergence toemin , l
must be increased with time. We first consider a power-
schedule

l~a!5l0a2n. ~38!

Defining

r ~a!5l~a!@12R~a!# ~39!

and using Eq.~30! yields

FIG. 4. The shape off (r ) given by Eq.~A11! for Q050.5, p
50.2, and l050.001. The solid line showsf (r )/Al0 and the
dashed line is22r . If l0,lmax, there are two fixed points, on
stable~filled circle! and the other unstable~open circle!, as shown
where f (r )/Al0522r .
w

dr

da
5

f ~r !

Al0an
1

2nr

a
. ~40!

It can be seen that convergence ofr to a finite value requires
~see paper I!

0<n<1. ~41!

For n,1 the dominant term in the right hand side of Eq.~40!
is the first term, yieldingr (a)→r * as in the fixedl case,
Eq. ~32!. This implies that

eg~a!2p'
e2Q0

2/2

3Ap

1

Al~a!
~42!

'
e2Q0

2/2

3Apl0

1

an
.

Note that the coefficient does not depend on the noise le
p. Forn.1 the dominant term in Eq.~40! is the second term
which results in the divergence ofr with a. Optimal power
of convergence is achieved forn51 in which case the two
terms in Eq.~40! contribute equally. In this case, ifl0 is less
than an upper boundlmax, r (a) converges to a value, a
stable fixed pointr * as shown in Fig. 4, which depends o
l0 ~see the Appendix!, and

eg~a!2p}~122p!
e2Q0

2/2

p
A2r *

l0

1

a
, n51, l0,lmax.

~43!

If l0.lmax andn51, then the dominant term in Eq.~40!
is the second term, which is

dr

da
'

2r

a
.0. ~44!

Therefore

r ~a!}a2 ~45!

and consequently

dR}
1

l0
, a→` ~46!

andeg2p remains finite.
In Fig. 5 we show the simulation results for this proble

with N550, p50.2, andl51025t2. The results agree with
the predicted inverse power-law learning curve. Inve
power-law convergence ofeg , which is of course the opti-
mal rate for this problem, is also obtained by other on-li
algorithms for the perceptron@19,20#. As discussed in pape
I, this rate of convergence is special for an unrealizabi
generated by uniform output noise. More generic unrea
able tasks are presented below.
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D. Perceptron with Gaussian input noise

Another popular model of an unrealizable task is learn
from examples in which the inputss are corrupted by a nois
h, i.e., the labels are given by

s0~s!5sgn~w0•s1h! ~47!

and h is assumed to have a smooth distribution. This c
falls under the category of a generic unrealizable rule. A
cording to paper I OLGA should converge to the minimu
of the generalization error in the limit of largel. For an
optimal schedule ofl (l5l0n) eg approachesemin as the
inverse ofAn. We now study this model for a noiseh that is
generated randomly by a Gaussian distribution

Dh5
dh

A2pp2
exp~2h2/2p2!. ~48!

The distribution of each of the input componentssi is a
Gaussian with zero mean and unit variance. We first disc
the analytic theory in the largeN limit. The generalization
error eg is given as

eg~R!52E
2`

1`

DhE
0

1`

DyHS Ry1ph

A12R2 D ~49!

5
1

p
arccosS R

A11p2D . ~50!

From Eq.~50!, we obtain for small 12R

eg~R!'emin1
12R

pp
, ~51!

with

FIG. 5. Generalization error of a perceptron learning from
amples generated by a perceptron with a uniform output noise,
a probability of mistakep50.2. The number of inputs is 50. Th
input distribution is a Gaussian which is centered around a vectu
with iui52 andu–w050.5AN. The parameterl is increased with
time as l5l0a2, with l051025. The inset compares th
asymptotic 1/a convergence of the algorithm with the theoretic
prediction~dashed line!.
g

e
-

ss

emin5eg~R51!5
1

p
arccosS 1

A11p2D . ~52!

In this case, the mean-field equation ofR is

dR

da
5F~R!, ~53!

where

F~R!52RE
0

A2/l
Dyy2E

2`

1`

DhHS Ry1ph

A12R2 D
1

~12R2!A12R21p2

p~11p2!

3F12expS 2
~11p2!

l~12R21p2!
D G . ~54!

1. Fixed largel

In contrast to the output noise case, the appropriate sc
variable in the limit ofl→` andR;1 is

r ~a!5Al@12R~a!#, ~55!

which obeys

dr

da
'

1

lS 1

3Ap
2

2r

pp D . ~56!

For fixed largel, r converges exponentially to a fixed-poin
value r * 5pAp/6 yielding

eg2emin'
1

6Ap

1

Al
. ~57!

2. Power-law schedule forl

In order to obtain thateg2emin vanishes in the limit of
infinite time, we assume the power-law schedule

l~a!5l0an, where 0,n<1 ~58!

and analyze the dynamics ofr (a)5Al(a)@12R(a)#. If
n,1, the dominant terms in the differential equation forr (a)
reduce to

dr

da
'

1

l0anS 1

3Ap
2

2r

ppD . ~59!

ThusdR vanishes as

dR~a!'
App

6Al0

a2n/2 ~60!

andeg converges toemin as

eg~a!2emin'
1

6Apl0

a2n/2. ~61!

-
th
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Note that the coefficient does not depend on a noise,p.
Optimal learning rate is obtained forn51. In this case,

dr

da
5S 2

l0a
D F 1

6Ap
2r S 1

pp
2

l0

4
D G . ~62!

Thus, in order to keepr (a) from growing,l0 has to satisfy

l0,l0
max, ~63!

wherel0
max54/pp. From Eq.~62!, we obtaindR vanishing

as 1/Aa which is

dR~a!'
2Ap

3~42ppl0!

p

Al0a
~64!

andeg converges as

eg~a!2emin'
2

3Apl0~42ppl0!

1

Aa
. ~65!

The optimal coefficientl0* is

l0* 5
4

3pp
, ~66!

for which

eg~a!2emin'
A3p

8

1

Aa
. ~67!

For n51, if l0 does not satisfy Eq.~63!, then the second
term in Eq.~62! keeps growing while the first term remain
finite. Thus Eq.~62! can be written approximately,

dr

da
'

r

2aS 12
l0

max

l0
D . ~68!

ThendR vanishes as

dR~a!'
1

Al0

a2~l0
max/2l0! ~69!

andeg converges toemin in suboptimal rate which is

eg~a!2emin'
1

ppAl0

a2~l0
max/2l0!. ~70!

The results of the numerical simulations of the model and
theoretical asymptote are presented in Fig. 6.

E. Perceptron learning a committee-machine rule

Our final example of a perceptron learning an unrealiza
rule is the case of a rule generated by a committee mac
with three hidden units with weight vectorsw0

k , k51,2,3.
Thus the outputs0(s) generated by the teacher is

s0~s!5sgnS (
k51

3

sgn~w0
k
•s!D . ~71!
e

le
ne

We further assume thatw0
k
•w0

l 5Ndkl wherek, l denote the
indices of hidden units andw0

kPRN.
From the analysis of paper I, we expect that t

asymptotic behavior is similar to the case of a percept
with input noise. In particular, for time-dependentl the best
convergence rate toemin is achieved forl(a)5l0a. In this
case,

eg~a!2emin}
1

Aa
,a→` ~72!

as in the case of input noise. This expectation is borne ou
our numerical simulations, shown in Fig. 7. In the simulati
the distribution of each of the input componentssi is a
Gaussian with zero mean and unit variance. They dem
strate that with the above mentioned schedule forl, the sys-
tem converges to the minimum ofeg with the rate of Eq.

FIG. 6. Generalization error of a perceptron with input nois
The number of inputs is 50. The noiseh is generated from a Gauss
ian distribution whose center is zero and standard deviation is
The parameterl is increased with time asl5l0a, with l050.01.
The inset compares the asymptotic convergence of the algor
with theoretical prediction~dashed line!.

FIG. 7. Generalization error of a perceptron learning a rule g
erated by a three hidden unit committee machine with 50 inp
The parameterl is increased with time asl5l0a with l051.0.
The inset exhibits the asymptotic 1/Aa convergence of this algo
rithm. The dashed line is the best linear fit of the late part of
simulations.
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~72!. The analysis of these simulations depends on know
with accuracy the value of the minimal generalization err
In the present case,eg is

eg~w!56E
0

`

DxE
0

`

DyHS R1x1R2y

A12R1
22R2

2D ~73!

24E
0

`

DxE
0

`

DyE
0

`

DzHS R1x1R2y1R3z

A12R1
22R2

22R3
2D ,

~74!

whereRk are the overlaps betweenw andw0
k defined as

Rk5
1

N
w–w0

k . ~75!

The optimal value ofeg is obtained whenw is in the same
distance from all three teacher weight vectors. Minimizi
with respect toR5Rk yields

Rk5
1

A3
for all k ~76!

andemin50.162.

IV. OLGA FOR A COMMITTEE MACHINE

A. Definition of the algorithm

For a learning system with a committee-machine archit
ture

s~$wl%,s!5sgnS (
l 51

M

sgn~wl•s!D , ~77!

the trained parameters are theM vectorswl , whereM is an
odd integer bigger than 1. We will assume that they are k
normalized so thatwl•wl5N at all times. The on-line energ
function E is

E~$wl8%u$wl%!5e~$wl8%;s!1
l

2(
l 51

M

iwl82wl i2, ~78!

where$wl8%5$wl
n% and $wl%5$wl

n21% are the new and cur
rent weight vectors of the student, respectively. After ea
presentation of a new labeled example, based on the ge
steps outlined in Sec. II, the learning algorithm is as follow

~1! If s5s0, w85w.
~2! If sÞs0, then measure$hl% where

hl[wl
n21

• ŝn. ~79!

Note that sincesÞs0 the numberM 8 of local fields which
has ‘‘wrong outputs,’’ i.e.,s0

nhl,0 obeys (M11)/2,M 8
<M .

~3! Order the hidden units withs0
nhl,0 according to the

magnitude ofuhl u so that uhl u,uhl 11u. The candidates for
updating are the unitsl 51, . . . ,Mupdatewhere

Mupdate5M 82~M21!/2, ~80!
g
.

-

pt

h
ral
.

which is the minimal number of hidden units that need to
corrected in order to change the sign ofs.

~4! To minimize the change which will correct the erro
each of the corresponding weight vectorswl ,l
51, . . . ,Mupdate is updated according to the perceptron u
dating rule,

wl
n5Al~wl

n212hl ŝ
n!, ~81!

whereAl5(12N21hl
2)21/2.

~5! The above rule is implemented only if the local field
of the candidates satisfy the bounded-change condit
which in the present case reduces to

(
l 51

Mupdate

@12A12~hl
2/N!#,1/lN. ~82!

If the bounded-change condition is not satisfied,$wl8%
5$wl%. For largeN, the bounded-change condition can
simplified to

(
l 51

Mupdate

hl
2,2/l, ~83!

see Eq.~12!.
In the following we present our main numerical results f

the convergence of this algorithm. All the simulations a
performed with inputss that are drawn from Gaussian distr
bution in which each component has a unit variance and z
mean. The weight vectors of the teacher are chosen orth
nal to each other, i.e.,w0,k•w0,l5Ndkl . The initial student
vectors are generated randomly from a uniform distribut
for each component ofwl between21 and 1, followed by a
normalizationwl•wl5N.

B. Realizable committee machine

Our first example is the case where the teacher has
same committee-machine architecture as the student, witM
orthogonal weight vectorswl

0 . The optimal value ofeg is
zero when$wl%5$wl

0%. Our numerical simulation results fo
M57 andM519 are shown in Figs. 8 and 9, respective
The main result is that in all cases studied~different values
of M, ranging between 3 and 19! the system converges to th
global minimum ofeg and the asymptotic convergence ra
to zeroeg is

eg'
1

a
, ~84!

wherea is defined as the number of examples per weig
This convergence is identical with the result for the real
able perceptron case. As in the perceptron case, the a
convergence is achieved even whenl is fixed in time. How-
ever, unlike the perceptron case, we find here that only w
the initial student weight vectors are in the neighborhood
the teacher weight vectorseg converges to zero for all value
of l. To guarantee convergence from most~randomly
sampled! initial conditions the constantl may need to be
larger than some lower bound~which may depend onM!.
For instance, forM53, we find thateg converges from mos
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initial conditions to zero apparently for all values ofl. How-
ever, forM>5, we find thatl should be at least ofO ~100!
to converge toeg50. Otherwise depending on the initia
conditions the system may get stuck in a suboptimal reg
of the weight space. This difference is indicative of the mo
complex structure of the learning dynamics in t
committee-machine case.

Another indication of this complexity is the existence
plateaus in the curve ofeg as shown in Figs. 8 and 9 fo
M57 andM59, respectively. An interpretation of this pla
teau in terms of spurious fixed points of the mean-field
terministic dynamics is not clear, since as far as we can
the macroscopic order parameters keep changing with
although very little change happens in the value ofeg . To
illustrate this important phenomenon we define an effec
order parameterr as

r51/M(
l

Rk0 ,l , ~85!

whereRk,l is the overlap between the teacher’skth weight
vector and the student’slth vector, Rk,l5w0,k•wk /N, and
Rk0 ,l denotes Max$R1,l ,R2,l . . . ,RM ,l%. The temporal evolu-

tion of r alongside that ofeg is shown in Figs. 8 and 9. Thes

FIG. 8. Generalization error of a committee machine withM
57 vs the number of examples per weight,a. The number of inputs
is 150 andl5200. The dashed line indicates the correspond
order parameterr, Eq. ~85!. Inset exhibits the asymptotic conve
gence.

FIG. 9. The same as in Fig. 8 but withM519, the number of
inputs is 50 andl5100.
n
e

-
ll
e

e

results show thatr changes substantially even in the platea
of eg . Thus these plateaus do not correspond to genu
fixed points~even in the largeN limit !. Similar phenomena
have been observed and discussed in other on-line lear
algorithms for ‘‘soft’’ committee machines@9,12#.

C. Committee machine with output noise

As an example for learning unrealizable tasks, we tr
output noise for a committee machine. The teacher’s ou
is corrupted by a noise generated uniformly with probabil
p. The output of the teacher is given as

s055 1sgnS (
l 51

M0

sgn~w0,l•s!D with probability 12p

2sgnS (
l 51

M0

sgn~w0,l•s!D with probabilityp.

In this problem,emin5p, and the optimal weight vectors ar
$wl%5$w0,l%.

We performed numerical simulations of this problem w
M53 andN550, and various values of the~fixed! param-
eter l. We find ~results not shown! a residualeg which for
largel behaves as

eg2p'1/Al. ~86!

With a power lawl we obtained our best results by choosi
l~a! as

l5l0a2, ~87!

which yielded

eg2p'1/a ~88!

as shown in Fig. 10.
The results exhibit a remarkably sharp drop ineg at a

'2.93105. Such a sharp change ineg was not observed in
any of the many systems and target rules that we have s

g

FIG. 10. Generalization error of a committee machine withM
53 learning from examples generated by a teacher with the s
architecture but corrupted by uniform output noise, with a proba
ity of mistakep50.2. The number of inputs is 50. The parametel
is increased with time asl5l0a2, with l059.0310210. The inset
exhibits the asymptotic 1/a convergence.
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lated. Finally, our simulations showed that in order to gu
antee convergence ofeg to emin from most of the initial con-
ditions l0 must not be greater than'10210. For larger
values ofl0 the system may converge to a spurious fix
point depending on the initial conditions. Ifl~a! is chosen to
increase less rapidly thana2 convergence toemin is insensi-
tive to the prefactor. This behavior, which is similar to th
shown above in the analytical solution of a single-layer p
ceptron with output noise@Eqs.~42!–~46!#, is in accordance
with the general theory of OLGA in the case of output noi
and will be further discussed in the last section.

V. OLGA FOR A WINNER-TAKES-ALL CLASSIFIER

A. Definition of algorithm

In this section we consider a winner-takes-all classi
which can be modeled by a two-layer neural network with
layer of M linear hidden units. The weights$wl% from the
input to hidden units are learned. Each hidden unit is c
nected to its output unit by a weight fixed as one. The out
of the system is the index of hidden unit,l with maximum
local field hl , which is given as

s~s!5argmaxl$wl•s%. ~89!

The number of units in the hidden layer is arbitrary. We w
adopt an overall weight normalization

(
l 51

M

iwl i25MN. ~90!

Finally we assume that the labels on the examples are th
selves generated by a classifier so thats051, . . . ,M .

For the sake of simplicity we first define OLGA for
WTA with M53. Let us assume that a new examplesn

generates the following local fields:

hl[wl
n21

• ŝn, ~91!

where as beforeŝ is unit vector in the direction ofs. Suppose
that the winner among these units isk, i.e.,s(sn)5k and the
label on this example iss0(sn)5k0. We need to conside
only the casekÞk0, otherwise we keep the current weig
vectors. Let us assume that, say,k51 andk053. This means
that h1.h2 ,h3 and we want to make a minimal change
the weights so that the new local fieldh38 will be the largest
field. We have to consider separately the following tw
cases.

~1! h2,(h11h3)/2. In this case we have to increaseh3
and to decreaseh1 by the same amount so that

h185h385
h11h3

2
[h8. ~92!

The local field h2 need not be changed, since the abo
change will leaveh2 smaller thanh8 as desired. The updat
ing rule which satisfies Eq.~92! is

wl
n5A@wl

n211~h82hl !ŝ
n# ~93!

for l 51 and 3, whereas
-

t
-

,

r
a

-
t

l

m-

e

w2
n5Aw2

n21 . ~94!

The coefficientA is determined by the normalization cond
tion Eq. ~90!. The bounded change condition is given as

(
l 51

3

iwl
n2wl

n21i2,2/l. ~95!

If this condition holds, we accept the new weight vecto
Otherwise, we keep the current weight vectors$wl

n21%.
~2! h2.(h11h3)/2. This can occur only ifh3,h2,h1.

In order to correct the instantaneous error it is necessar
update all three hidden units so that the new local fields$hl8%
should satisfy the condition

h185h285h385
h11h21h3

3
[h8. ~96!

The updating rule for each weight vector which leads to E
~96! is given by Eq.~93! for all three vectors. This update i
performed provided the bounded change condition Eq.~95!
is satisfied.

Extending this algorithm for an arbitrary number of hi
den units is straightforward. We again denote the label of
new input ask0 and assume that it does not agree with t
winner of the current weights. The hidden units that are c
didates for weight change are those with local fields that
greater thanhk0

. We order these units so thathl,hl 21 for

l 51,2, . . . ,k0. Using this rearrangement of indices,s(sn)
51 whereass0(sn)5k0. In order to determine how many o
thesek0 units should be actually updated we proceed as
lows. We first consider the possibility that onlyh1 and hk0

need to be changed, in which case the change will be gi
by Eq. ~93! with h85(h11hk0

)/2. We thus compareh2 to

this value ofh8. If h2,h8, we accept the new weight vector
w1

n andwk0

n and for the rest, we multiply the current weigh

vectors by the normalization factor A, i.e.,
Aw2

n21 ,Aw3
n21 , . . . ,Awk021

n21 . If h2.h8, then the next can-

didate vectors arew1
n , w2

n , andwk0

n . The corresponding new

local fields areh85(h11h21hk0
)/3. Now we compareh3

with this value ofh8. If h3,h8, we stop searching for a
candidate for updating and the new vectors arew1

n , w2
n , and

wk0

n given by Eq. ~93! and the rest of weight vectors ar

multiplied by the normalization factorA. Otherwise, we con-
tinue this procedure as described above until we find a
with an indexL which satisfieshL11<h8, where

h85

(
l 51

L

hl1hk0

L11
. ~97!

The associated weight vector updates of all the un
h1, . . . ,,hL ,hk0

are as in Eq.~93! and the rest are obtaine

by wl
n5Awl

n21 . Finally, we check the bounded-change co
dition,
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(
l 51

M

iwl
n2wl

n21i2,2/l. ~98!

If this condition does not hold for the above update we ke
the current weight vectors$wl

n21%.

B. Realizable WTA

We have applied the above algorithm to simulate the c
of a WTA learning examples generated by a teacher WT
both having the same number of hidden unitsM. The weight
vectors of the teacher are chosen orthogonal to each o
i.e., w0,k•w0,l5Ndk,l . The initial value of each studen
weight is drawn from a uniform distribution of between21
and 11. The weight vectors are then normalized so t
( l 51

M iwl i25MN. Each component of the inputs was drawn
from a Gaussian distribution with zero mean and unit va
ance. The numerical simulations used a fixed value ofl and
M ranged between 3 and 19. An example of the simulati
is shown in Fig. 11. The main result is that in all cas
studied, the system converges toeg50 and the asymptotic
convergence rate to zeroeg is

eg'
1

a
, ~99!

wherea is the number of examples per weight. The behav
of this system is similar to that of the realizable percept
shown in Sec. III B. Not only is the asymptotic convergen
the same, but also the overall behavior ofeg . Thus in both
caseseg decreases smoothly and rapidly from most init
conditions and this behavior does not seem to require
ticularly largel. This should be contrasted with the case
the realizable committee machine discussed in Sec. I
above.

VI. SUMMARY AND DISCUSSION

In this paper we derived explicit update rules that follo
from OLGA for a single-layer perceptron, a two-layer com
mittee machine, and a WTA classifier. We have studied

FIG. 11. Generalization error of a WTA withM519 learning a
rule generated by the same architecture. The number of inpu
150 andl51. The inset exhibits the asymptotic 1/a convergence of
this algorithm.
p

e
,

er,

t

-

s
s

r
n

l
r-
f
B

e

convergence properties of the update rules for a variety
target rules, both realizable and unrealizable. The analyt
results~for the single-layer perceptron! as well as the exten
sive numerical simulations confirm the main general pred
tions of the asymptotic convergence of the determinis
limit of OLGA that were derived in paper I.

The OLGA update rule for a single-layer perceptron
related to other learning algorithms which were proposed
the perceptron. In particular, if we take the zerol limit of the
OLGA update rule, Eq.~9!, and drop the normalization con
dition, we obtain the simple update rule

wn5wn212hn21ŝn, s0hn21,0, ~100!

andwn5wn21 if s0hn21.0. This update rule is one varian
of the ‘‘orthogonal projection’’ algorithm proposed as ear
as 1954@18,21,22# for learning a set of linear inequalities
More recently it was studied under the name ‘‘AdaTron
gorithm’’ @23#. The original analysis of the algorithm wa
performed in the context of batch learning. More recen
the performance of the AdaTron as an on-line algorithm fo
perceptron has been studied@24# analytically for a perceptron
learning a realizable rule with Gaussian distributed inpu
using mean-field theory, similar to our treatment of S
III B. Our prediction of the asymptotic convergence of th
case, Eq.~24!, agrees with the previous analysis@24# ~see
also Ref.@13#!.

It should be emphasized that the AdaTron on-line alg
rithm is adequate only if the data are generated by a per
tron. Our work focuses mostly on the problem of on-lin
learning of unrealizable rules. In such cases, the AdaT
algorithm does not converge in general to the minimum ofeg
even in the local sense. To ensure local convergence to
minimum of eg one must use OLGA with the constraint im
posed byl on the above update withl that grows with time,
as was shown in this paper.

Considering the update rule for the committee machine
should be noted that unlike the backpropagation algorith
OLGA’s update rule is nonlocal. Although each updati
hidden unit follows a perceptron update rule for its weig
vector, only part of the units update their weights at ea
time step. The decision whether to update at all~i.e., the
bounded change criterion! as well as the choice of the upda
ing units depend on the local fields of all the units, as follo
from Sec. IV A. A similar nonlocality occurs for the WTA
network, Sec. V A. Deriving efficient OLGA update rules fo
networks with more hidden layers is an interesting issue
yond the scope of the present study@25#.

The present paper and paper I show that the converge
properties of OLGA in discrete output systems are similar
those of the stochastic gradient descent algorithm in smo
systems. Both algorithms contain a learning rate param
which controls the size of the changes made at each s
When the learning rates are small the two algorithms sp
most of the time in the vicinity of the local minima of th
generalization error. Furthermore, by an appropriate pow
law decrease of the learning rate these local minima bec
the true fixed points of the dynamics.

Both the on-line gradient descent algorithm and OLG
suffer from the same fundamental weakness. They do
guarantee convergence to the global minimum ofeg . Guar-

is
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anteeing global convergence requires in both cases the a
tion of stochastic noise in the learning dynamics. In the c
of the stochastic gradient descent algorithm this amount
using a~discrete time! Langevin dynamics, as studied in d
tail by Kushner@26#. In the case of OLGA, one needs to u
OLGA at finite temperature, as discussed in detail in pape
The difference between local and global convergence
OLGA has been demonstrated here in the case of a com
tee machine with five hidden units learning a rule genera
by the same architecture. If the initial weights of the stud
network are close to the teacher’s weights, the system c
verges to the teacher’s weights even whenl is small @see
Fig. 12~a!# as predicted for a general realizable rule in pa
I. However, if the initial weights are far away from the glo
bal minimum, we find numerically that only whenl.100
that system converges to the global minimum@see Fig.
12~b!#.

An important condition that a viable learning algorith
must satisfy is that its applicability should be largely ind

FIG. 12. Demonstration of the difference between the local
global convergence of OLGA in the case of a committee mach
with five hidden units learning a rule generated by the same ar
tecture. The number of inputs is 150.~a! The asymptotic 1/a con-
vergence of generalization error withl51 when the initial weights
of the student network are close to the teacher’s weights~the initial
overlaps of the corresponding student and teacher weight ve
were chosen to be 0.8!. ~b! Generalization error when the initia
weights are far away from the teacher’s weights. Withl51, the
algorithm does not converge to the global minimum. Withl5100,
the algorithm converges to the global minimum. The inset exhi
the asymptotic 1/a convergence withl5100.
di-
e
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f
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d
t
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pendent of the nature of the target rule or the distribution
inputs. The results of the two papers demonstrate that th
indeed the case with OLGA. We have shown here that
update rules derived from OLGA vary according to the
chitecture of the learning system. However, they are ess
tially independent of the target rules or the specific form
the input distribution. This is similar to the stochastic gra
ent descent algorithm. Evaluating the local gradient depe
on the system’s architecture but not on the target rule. F
thermore, no parameter has to be especially tuned in orde
guarantee convergence to a~local! minimum of eg . In par-
ticular, for a generic unrealizable rule if one chooses
power-law increase ofl with a suboptimal power, i.e.
l5l0nn with 0,n,1 local convergence to a minimum o
eg is guaranteed for all values of the coefficientl0. To em-
phasize the important universality of OLGA we present
Fig. 13 the simulation results of OLGA for a single-lay
perceptron learning a variety of unrealizable rules. In
cases we used the same schedule forl, namely, l
50.01l3/4. As the figure shows, not only does the syste
converge toemin in all the cases but all the learning curve
exhibit the same power-law convergence, namely,eg2emin

}1/Al.
If optimal power-law convergence is sought then in t

generic unrealizable case, one needs to choosel5l0n with
l0 smaller than an upper cutoffl0

max. In general this cutoff is
unknown, since it depends on the target rule and input
tribution. Furthermore, even in this case ifl0.l0

max, the
system still converges to the local minimum ofeg though
with a slower rate, as shown in the case of perceptron le
ing data corrupted by input noise@see Eqs.~68!–~70!#. These
properties are completely analogous to the behavior of
on-line gradient descent algorithm with a power-law d
crease of the learning rate. An exception is the case of ou

d
e
i-

rs

s

FIG. 13. eg of OLGA for a perceptron learning: a perceptro
rule with output noise with noise levelsp, p50.3 ~a!, 0.4 ~b!, and
0.48 ~c!; a perceptron rule with a Gaussian input noise with st
dard deviation 1.6~d!; a committee-machine rule with three hidde
units ~e!. The simulations~solid lines! are with 50 inputs, each ha
zero mean and a unit variance Gaussian distribution. The sche
of l is l50.01a3/4. The dashed lines are theoretical asympto
except for~e!, where it is the best linear fit. The theoretically eval
atedemin is p ~a!–~c!; 0.3222~d!; 0.1623~e!. The factor 1/A in the
vertical axis is 1.5, 0.9, 0.6, 0.6, and 0.3, for~a!–~e!, respectively.
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noise. Here one can achieve a considerably faster rat
convergence since the value ofn can be as large as 2. In th
case, if one choosesl5l0n2 with l0.l0

max wherel0
max is

system dependent then the system will not converge to
local minimum ofeg as we show analytically in the case of
single-layer perceptron, Eq.~46! above.

The above property of OLGA should be contrasted w
the recent introduction of the so-called ‘‘optimal on-lin
learning’’ @27–30#. In this approach, the generalization err
as a function of the student’s weights is calculated us
mean-field theory. Minimizing this function yields upda
rules that are optimal in the sense that they generate
fastest rate of reduction ineg . These calculations are inte
esting in that they provide a lower bound on the performa
of on-line learning algorithms. However, they cannot be c
sidered as interesting models of on-line learning. This is
cause of the obvious reason that the calculation ofeg and its
derivatives is possible only in those cases where the natu
the target rule is known as well as that of the input distrib
tion. Even under these conditions, the mean-field calc
tions can be performed only in a restricted class of proble
It is therefore unfortunate that optimal on-line learning c
culations are portrayed as on-line learningalgorithms ~see
Refs. @31# and @32#!. Regrettably, misconceptions about t
role of analytical solutions of synthetic models are not u
common in the field of neural networks. The need to g
theoretical insight into the performance of a model may
quire investigating its behavior in artificially simplified con
ditions. However, in order for the model to be interesting
all, it should be well defined and applicable under realis
conditions.

The advantages of using OLGA in real world problem
have to be judged relative to other commonly used sup
vised on-line learning algorithms with similar network arch
tectures, notably the backpropagation algorithm. The m
advantage of OLGA over the back-propagation algorithm
in problems where the desired output is discrete, such a
learning Boolean functions, or classification tasks. Ba
propagation, being a gradient-based method, requires tha
the neurons~except possibly the input ones! have smooth
outputs. Applying the backpropagation algorithm to the
problems requires addingad hocparameters such as the for
of the sigmoidal input-output functions of the neurons a
their gains. In addition, the smooth error function used~im-
plicitly ! in the training is different from the discrete measu
of error used in gauging the performance of the network a
training. In contrast, algorithms such as OLGA allow us
keep the discrete nature of the outputs~and possibly also
hidden units! and are thus simpler to interpret in terms of t
underlying tasks. Whether this formal advantage can
translated to practical advantages in learning classifica
tasks remains to be studied.

In conclusion, we note that several important questio
regarding on-line learning are still open. Among them is
entire issue of the global convergence properties of on-
learning discussed above. Another issue is the on-line le
ing in systems with discrete valued parameters, such as
works with binary weights. Most on-line algorithms includ
ing OLGA rely on the possibility of making small changes
a single update hence they are inadequate for discrete va
weights.
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APPENDIX: MEAN-FIELD THEORY OF PERCEPTRON
WITH OUTPUT NOISE

The definition of the generalization is

eg~w!5 ^̂ ^Q„2s0~s!s~w–s!…&&&, ~A1!

where^^ && denotes average over the input distributionP~s!
given by Eq. ~25! and ^ & denotes here average over th
output noise. Performing the average over the output no
we obtain

eg~w!5~122p!^̂ Q„2s0~s!sgn~w–s!…&&1p. ~A2!

Performing the average over the input distribution yields

eg~R,Q!5p1~122p!F E
2`

2Q

DyHS 2Q02Ry

A12R2 D
1E

2Q

`

DyHS Q01Ry

A12R2D G , ~A3!

whereQ andQ0 are defined in Eqs.~28! and ~26!.
In the largeN limit R and Q obey the differential equa

tions

dR

da
5

R

2
^h2&D2^h0h&D ,

~A4!

dQ

da
5

Q

2
^h2&D2^~u–s!h&D ,

where the subscriptD means averaging over the volume ofs
which satisfies the bounded-change condition, Eq.~12!, and
a5n/N is the scaled time variable. Performing the avera
over the inputs, we obtain

dR

da
52~122p!@ f 1~R,Q0 ,Q!1 f 1~R,2Q0 ,2Q!#

2p f2~R,Q0 ,Q!, ~A5!

where
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f 1~R,Q0 ,Q!5
1

A2p
E

2A2/l

0

dye2 ~y2Q!2/2

3F S R

2
y21AyDHS 2Ry2A

A12R2 D
1yA12R2

2p
expS 2

~Ry1A!2

2~12R2!
D G

~A6!

and

f 2~R,Q0 ,Q!5
1

A2p
E

2A2/l

1A2/l
dye2 ~y2Q!2/2S R

2
y21AyD ,

~A7!

dQ

da
52~122p!@ f 3~R,Q0 ,Q!2 f 3~R,2Q0 ,2Q!#

2p f4~R,Q0 ,Q!, ~A8!

where

f 3~R,Q0 ,Q!5
1

A2p
E

2A2/l

0

dye2 ~y2Q!2/2

3F S Q

2
y21~u22Q2!yDHS 2Ry2A

A12R2 D
1

Ay

A2p~12R2!
expS 2

~Ry1A!2

2~12R2!
D G

~A9!

and

f 4~R,Q0 ,Q!5
1

A2p
E

2A2/l

1A2/l
dye2 ~y2Q!2/2

3S Q

2
y21~u22Q2!yD . ~A10!

Herey5h, A[Q02QR, andu25u–u. The above equation
hold for arbitrary value ofl. To derive the largel limit, we
scale the variablesR andQ as in Eqs.~29! and expand Eqs
~A5! and~A8! up to O(1/l3/2). This results in Eqs.~30! and
~31!, for r (a) andq(a), respectively, with
f ~r !5
2

Ap
e2Q0

2/2F p

3
1~122p!H E

0

1

dyy2HS y

Ar
D

2A2

p
r 3/2~12e2 1/2r !J G , ~A11!

G~r ,q!5
2

Ap
e2Q0

2/2H Q0~112u222Q0
2!

3F p

3
1~122p!E

0

1

dyy2HS y

Ar
D G

2
~122p!

A2p
~11u22Q0

2!r 3/2

3S q

r
1Q0D ~12e2 1/2r !J . ~A12!

Thus the equation forr determines its fixed valuer * , and
upon substituting in the second equation above,q* is deter-
mined. In fact, from Eq.~A12! one obtains

q*

r *
5Q0~113u223Q0

2!/~11u22Q0
2!. ~A13!

If l increases with time with the schedule of Eq.~38! with
n51, Eq. ~40! becomes

dr

da
5

f ~r !

Al0a
1

2r

a
. ~A14!

The fixed pointr* of the dynamics is obtained from

f ~r * !

Al0

12r * 50. ~A15!

As can be seen from Fig. 4, ifl0 is greater than upper boun
lmax, there exists no fixed point. We can obtainlmax by
taking derivative of Eq.~A14! with respect toa at r 5r *
which yields

lmax5
@ f 8~r * !#2

4
. ~A16!

If l05lmax, there is one fixed point. Ifl0,lmax, there are
two fixed points, one is stable and the other is unstable~see
Fig. 4!.
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