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In the preceding papgt'On-line Gibbs Learning. I. General Theoryive have presented the on-line Gibbs
algorithm (OLGA) and studied analytically its asymptotic convergence. In this paper we apply OLGA to
on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee
machine, and a winner-takes-&WWTA) classifier. The behavior of OLGA for a single-layer perceptron is
studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule
corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee
machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by
output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results
reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the
studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning
rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as
that of batch learnind.S1063-651X%98)07908-3

PACS numbes): 87.10+e

[. INTRODUCTION Sec. Il we apply OLGA to a single-layer perceptron and
study analytically and numerically its behavior for a realiz-
Most of the conventional on-line learning algorithms areable target rule as well as various kinds of unrealizable rules.
variations of the stochastic gradient descent algorithm whicA he analytical studies are based on mean-field theory which
moves in the direction of the gradient descent of the instanis valid in the thermodynamidarge network sizglimit. In
taneous error functiofl—17]. For a sufficiently small learn- Sec. IV we define the OLGA update rule in the case of a
ing rate, the stochastic gradient descent algorithm convergd@o-layer network with a committee-machine architecture.
to a local minimum of the generalization error. As this algo-We study numerically this algorithm for learning a realizable
rithm relies on differentiating the error function, it is inap- "ule and a rule corrupted by output noise. In Sec. V we apply
plicable to learning Boolean functions or other discrete val-OLGA to the winner-takes-allWTA) classifier. We study
ued functions which are extremely useful for decision andiumerically the case of a WTA network learning examples
classification tasks. In a previous paﬂpaper ), we have generated by a network with the same architecture. In Sec.
presented a model of on-line learning, which we called theV! we summarize and discuss the results.
on-line Gibbs algorithm{OLGA). This model is also appli-
cable to learning discrete valued functions. In paper | we Il. DEFINITION OF OLGA
have analyzed its general asymptotic properties and showed ) i i .
that this algorithm converges in the limit of infinite number W& consider a learing system defined by a function
of examples to a local minimum of the generalization error?(SW), Wheresis the input vector and is the output, which

for both realizable and unrealizable tasks. Furthermore, witfi°" SImPlicity is taken as a scalar. The target task is a real
an appropriate choice of a power-law learning rate itevalued functiono(s). At each presentation of an example,

asymptotic convergence obeys, in general, similar poweldexed by the intege, t:1e system Is given an input vector
laws as those obtained in batch learning. s'and its deswed. output,= 0o(3"). The inputs are draw.n at

Computing the one-step update of the weights accordin@a”dom fro'm a dIStI’IbU'[I'OIDS. For each example; therg is an
to OLGA may be rather complex, depending on the systen§'or function e(w;s) which measures the dissimilarity be-
architecture. It is therefore important to know whethertween the system output and the desired value,. We
OLGA can be readily implemented in network architecturesdenote byw the current weight vector, i.e., the weights
which are commonly used in supervised learning. In this€valuated aften—1 presentations of examples, and Wy
paper we Study the app]ication of OLGA to several networkthe new Welght vector, which is evaluated fOlIOWing the pre-
architectures. Our first goal is to derive explicit update rulessentation of theith examples=s'. Givenw ands the update
for these architectures. The second goal is to study the coriule for evaluatingv’ is based on the energy function
vergence properties of the algorithm in these systems for
various target rules and to demonstrate some of the general
results derived in paper I. The general definition of OLGA
includes a temperature parameter characterizing its stochastic
nature. We will focus in this paper only on the deterministiclt is an energy function in the space of the new weighits
version of OLGA, i.e., its zero-temperature limit. which depends parametrically @nands. The first term inE

The outline of this paper is as follows. In the following represents the cost incurred by the error due to the new ex-
section, we briefly summarize the definition of OLGA. In ample. Minimizing this instantaneous error is not a good

B W= e+ W w1
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strategy as it will lead to large changes in the values of the (2) Minimal changelf e(w;s)=1 then one has to search
weights which will quickly erase past knowledge stored infor the nearestvector tow that satisfiesthe new example.
the current weights. In order to avoid such changes we add (3) Bounded changeThis new vector is chosen ag’
the last term inE which prevents the system from making provided that it lies within a hypersphere centeredwowith
big changes in the weights at each presentation. Bwep-  radius\2/x, i.e.,
resents a compromise between the need to satisfy the new
example and the need to minimize the changes in the weights [w’ —wi< V2N, 3
at each step. )

In general OLGA is defined as a stochastic learning ruleOtherwisew’ =w.
Given the current weights and the new randomly sampled
example usinds, the new weight vector is sampled at ran- lll. OLGA FOR A SINGLE-LAYER PERCEPTRON

dom with the(conditiona) on-line Gibbs distribution, i.e., In this section we apply OLGA to the case where the

B learning system is a single-layer perceptf8],
P(w’|w,s)ocex;{ — —E(w’|w,s)>. 2
2 o(W;S)=sgnw-s), (4)

In this paper we will focus on the deterministic limit of \yhere boths andw are N-component vectors. It is assumed
OLGA which corresponds to the cade=1/8=0. We will  that the learned rule is also a dichotomy, ig,=+1. We
consider here only casedere the instantaneous measure offirst define the learning algorithm. We then present analytical
error is binary. In this case, minimizing= implies that the 334 numerical results for the learning curve of this algorithm

current weightw is changed only ifw does not satisfy the i, gpecific cases of realizable and unrealizable target rules.
new example and in addition there is a weight vector suffi-

ciently close tow that does satisfy the new example. Specifi-
cally, theT=0 OLGA for the binary error consists of three
principles. We assume that at theth step, the perceptron is given a
(1) Error correction If e(w;s)=0 then the minimum oE ~ new example in the form of an input vectst and a label
is clearly w'=w, hence no change is made. Furthermoreo(. Since the output is independent of timagnitudeof the
whene(w;s)=1, and a move is made, it will always be to a weight vectorw, we will use a version of OLGA that nor-
new weight vector that does satisfy the new examplemalizes the weight vector at each step. We will show below
Whether such a move is performed depends on the two fokhat the normalized OLGA reduces to the following update
lowing rules. rule:

A. Definition of the algorithm

o AWt =hy 48", 0<—hy_g05< V2IN[1—1/(2\N)] -
- n—1

w otherwise,

where the quantityh,_, is the local field of the current w'=w""1+(h,—h, ;). (8)
weightw" ™! induced bys", o

A In order to minimize the change iw we have to maké,
hp_=w""=.s", (6) arbitrarily close to zero with a sign such thagh,=0. Sub-
R stitutingh,=0 in Eq. (8) yields
wheres=g/\/s-s, and the normalization coefficiest, is
w'=w""1-h,_,s" 9
An=(1—N_1hﬁ,1)_1/2. (7) n-1 ( )
Incorporating normalization of weight vectors the minimal

The upper bound oth,,_4| in Eq. (5) holds forA>1/N. If weight vector is given by

A<1/N there is no upper bound dh,,_4].

We now derive the above update rule. In order to mini-
mize the energ¥, Eqg. (1), we measure the local field,_;
of the current weightv"~ ! induced bys". If osh,_,>0, i.e.,
o=0, we keep the current weight" . If o#ay, i.e.,
ooh,-1<0, we search aminimal new weight vectorw"
which satisfiessgh,>0. Since changing the components of
w"~1 which are orthogonal t&" will increase the second
term in E without contributing to the correction of the instan-
taneous error, the principle of minimal change implies that N
these components are unchanged, i.e., 0<—h,_100<V2A[1-1/(2\N)] (11

wW'=A, (W' 1—h,_,s"). (10)

The value ofA, is determined by requiring that"-w"=N,
yielding Eq.(7) . Finally, the bounded change condition, Eq.
(3), reads 24> | Aw||?=2N(1— 1/A,). Incorporating this re-
quirement, the updating rule, E(LO) is implemented if and
only if
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FIG. 1. Schematic illustration of OLGA update rule for a single-
layer perceptron. The vectoms, and w are the teacher and the

student weights, respectively. The dashed line denotes the decisiol

boundary of the student. The vecwis the new input, and we show
the case ofoy(s)=—1; o(w,5)=1. The vectorw’ is the nearest
vector which satisfieso(s). (a) If w’ lies within a distance of/2/x
from w, w moves tow’. (b) Otherwise, no update is made.

for A\>1/N. If A<1/N there is no upper bound dh,_4|. If
these conditiong11) are not satisfiedw"=w""*. Finally,
we note that for larg& N the bound simplifies to

0 <—h,_,00< 2. (12)

The perceptron update rule is shown schematically in Fig. 1.

B. Learning a perceptron rule
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0.4

0.3}

0.1}

0.0
0.0

FIG. 2. F(R), Eq.(18), for A\=0.1(solid line), 1.0(dashed ling
and 10.0(dotted ling.

wherehl_,=wj- 8" andD denotes the region in the space of
s” which satisfies the condition given by Ed.2). The aver-
age( )p can be explicitly performed using the Gaussian sta-
tistics of h andh?, yielding

We consider the problem of a single-layer perceptron

learning a realizable rule. The labeled examples are gener-

ated by a “teacher” perceptron with a weight vectay. The
minimum value ofey, €min, is zero if w=w,. From the

general theoretical results of paper | we expect that OLGA

will converge to the teacher vector for all valuesafwith a
generalization error that vanishes as.1h the following we

check this prediction by solving analytically the dynamics of

OLGA in the limit of largeN and by numerical simulations.

These calculations are performed for Gaussian input distri-

bution with zero mean and unit varian¢es?))=1. For this
input distribution, the generalization errey is

1
€q(W) = ;arcco$R), (13
where the overlafR betweernw andwy is
1
R= NW-WO. (14

We can derive the expression fAR,=R,—R,,_; in the
largeN limit using Egs.(5) and(7). ExpandingA, in powers
of 1/N yields

1+1
2N

W=~ (15

hﬁl)w"l—hnlén.

Taking the inner product witlvg on both sides of the above
equation yields

1/1
ARn:N (anKhﬁDD_(hglhnDD)’ (16)

1
ARn:NF(Rn—l)r 17)
where
F(R)= Rfmo oy Y
— T YR
1 1
+_(1_R2)3/2 1_ex% _ ) , (18)
™ AM1-R?)
wherey represents the random varialilg_; and
H(x)= f Dy 19
X

and Dy=dyexp(—y42)/\27. Finally, in the largeN limit
we can define a continuous scaled time variable

(20)

and writeAR,=dR/d«, thereby obtaining the following dif-
ferential equation foR(«):

g =F(R),

(21)

whereF(R) is defined as Eq18).

The shape oF (R) for a generah (0<\\ <) is shown in
Fig. 2. It is positive for alR<1 and monotonically decreas-
ing to zero aR=1. Thus Eq(21) has a single fixed point at
R=1 which implies thaR will always converge to 1 regard-
less of the(fixed) value of .. NearR~1,

F(R~l)~%(l—R2)3’2, (22)
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of the present algorithm we have considered the case of an
input s which is randomly chosen from a Gaussian distribu-
tion with a nonzero mean,

N
1 2
— - —(si—ui) 12
Po=11 T , (25)
with
1
QOZ\/_NU'W(), 0<Q0<1 (26)

If the center vectou is neither parallel nor orthogonal ta,,
the conventional on-line perceptron algorithm does not con-
verge tow, [15-17.

According to paper I, in the case of learning a realizable

FIG. 3. Generalization error of a realizable perceptron vs theyle corrupted by output noise, OLGA convergeswvpin the

inverse of the number of examples per weigit, The number of
inputs is 50 and.=1. The asymptotic convergence of the algorithm
is compared with the theoretical predictiofashed ling €4
~1.5/x.

independent ok. Thus the asymptotic convergencehfo 1
is

SR=1-R~| 2T 1 23
2\/5 a?
and ¢, vanishes as
3
eg(a)~5. (29

According to Eq.(23), the asymptotic behavior af; is in-

dependent ok, and the power law is in accordance with the

general theory of OLGA.
The numerical simulation of this problem is shown in Fig.

3. Each component of the initial student weight vector is

drawn randomly from a uniform distribution betweeri.0
and 1.0 followed by a weight normalization; w=N. As the

figure shows, there is a very good agreement with the pre

dictions of the theory.

C. Learning a perceptron rule with output noise

We now consider the case where the labels of the teacher
perceptron are corrupted by a noise. The noise is generated

uniformly with the probabilityp, 0<p<0.5. The target rule
is given as

+sgnwg-S) with probability 1—p

oo(9)= —sgn(wy-S)  with probability p.

Obviously, the optimal weight vector is stilv=w, and
emin=Pp- It has been shown previously that if the input distri-

limit of large \. For large fixed\ €4 deviates from its mini-
mal valuep by an amount of the order of {X. Furthermore,
when \ is made to increase with, €, approachep by a
power law which in the optimal case ¢\ ,n?) is inversely
proportional withn. We first check these results using the
large N analytic theory.

In the Appendix we show that,(w) is given by

-Q —Qo—RYy
€(R,Q)=p+(1-2p)| | DyH N
* Qo+ Ry
+ DyH , 2
J'Q Y 1-R? @
whereQ is defined as
_u-w 29
= N

As expectedgn,i,=p if w=wp, i.e., R=1 andQ=Qq.

1. Fixed large\

In the Appendix we derive the mean-field equationsRor
andQ in the largeN limit. It can be shown that for finitax
the fixed-point value oR is less than 1, but approaches 1 as
A—oo. In this limit we study the asymptotic behavior Bf
andQ in the vicinity of R~1 andQ~Q,. We define

r(a)=A1-R(a)], (29

A(a)=NQo—Q(a)].
The equations for the scaled variables are of the form

dr

az)\‘l’zf(r), (30)
dq  _,
E—)\ Y25 (r,q), (31)

bution is isotropic the conventional on-line perceptron algo-

rithm converges to the teacher weights even in the presencgheref(r) andG(r,q) are given in Eqs(Al1l) and (A12).

of output noisg[15-17. This is not the case for a general The shape of the functiof(r) is shown in Fig. 4. Because of
nonuniform input distribution. To demonstrate the advantagéhe form of the above equations the equation that determines
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5 dr f(r) 2vr 40)
— =t —
de [\ @
0 [
Stable fixed poi _ .
JStaple fixed point It can be seen that convergencer @b a finite value requires
o see papen)l
If 5 (see paper)
<X
= O=sv=<1. (41)
< 10}
For »<1 the dominant term in the right hand side of E40)
15t is the first term, yielding (a)—r* as in the fixed\ case,
Eq. (32). This implies that
-20 - : : : -Q2
0 2 4 6 8 10 e(a)—p~ o
r g NEIRE)) 2
FIG. 4. The shape of(r) given by Eq.(A11) for Qy;=0.5, p
=0.2, and\,=0.001. The solid line shows(r)/yA, and the e Q%2 1
dashed line is—2r. If Ag<Ana, there are two fixed points, one ~ —.
stable(filled circle) and the other unstabl@pen circlg, as shown 3Vmhg a”

wheref(r)/ o= —2r.

Note that the coefficient does not depend on the noise level
the convergence of the dynamics is E80). From the shape p. For »>1 the dominant term in Eq40) is the second term,
of f(r), it is seen that the system converges to the rodt of which results in the divergence ofwith «. Optimal power

andG, given byr* andg*, where of convergence is achieved foer=1 in which case the two
. terms in Eq.(40) contribute equally. In this case,\f; is less
f(r*)=0, (32 than an upper bound ., r(«) converges to a value, a
. xn stable fixed point* as shown in Fig. 4, which depends on
G(r*.q")=0. (33 )\, (see the Appendix and
This implies that at infinite time, 5
(a) (1-2 )e_QO/Z\/zr*l 1, A<M
1 € (a)—po(l— —, v=1, < .
1-R=-r*, a—x (39 ’ P b ™ Ao @ oo
A (43
Qy,— Q= Eq*, a0, (35 If Ao>\maxand v=1,_the_n the dominant term in E40)
A is the second term, which is
Since from Eq.(27) dr or
efQ(Z)IZ da_~ ;> 0. (44)
€ P~ (1-2p)V2(1-R), (36
Therefore
we obtain
) r(a)=a? (45
e 0?1
€~ P~ 3Vm I\ a—ee. G?  and consequently
The convergence to this value is exponentiakin 1
5Roc)\—, a—o© (46)
0

2. Power-law schedule foh

In order to achieve asymptotic convergenceet@,, A  and €,— P remains finite.

must be increased with time. We first consider a power-law In Fig. 5 we show the simulation results for this problem

schedule with N=50, p=0.2, and\ =10 %t2. The results agree with
20 the predicted inverse power-law learning curve. Inverse

Ma)=hoa™. (38) power-law convergence af,, which is of course the opti-
mal rate for this problem, is also obtained by other on-line

algorithms for the perceptrdi9,20. As discussed in paper
r(a)=Na)[1-R(a)] (39 I, this rate of convergence is special for an unrealizability
generated by uniform output noise. More generic unrealiz-

and using Eq(30) yields able tasks are presented below.

Defining
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(R=1) ! {—1 ) (52)
0.02 = €min— €glR=1)= —arcco .
0.2 | A ' T J1+p2
5 ,
c °|°w 0.01 ’ In this case, the mean-field equationPfs
OI;a R _ F(R) (53
o° 01 0'Oo 0.0002 0.0004 da !
1/
where
V2N +o Ry+p7n
F(R=—R f Dyy? J DyH| —
0.0 . ) . (R) . yy*| Dm —
0 2500 5000 7500 10000
o

FIG. 5. Generalization error of a perceptron learning from ex-
amples generated by a perceptron with a uniform output noise, with
a probability of mistakgp=0.2. The number of inputs is 50. The
input distribution is a Gaussian which is centered around a vector X
with [Ju|=2 andu-w,=0.5/N. The parametex is increased with
The inset compares the
asymptotic 1& convergence of the algorithm with the theoretical

time as A=»Aga?, with A\y=1075.
prediction(dashed ling

D. Perceptron with Gaussian input noise

Another popular model of an unrealizable task is learning

s (1-R?){1-R%*+p?

m(1+ p2)

(1+p?)

1. Fixed largex

In contrast to the output noise case, the appropriate scaled

variable in the limit ofA—« andR~1 is

r(a)=VA\[1-R(a)],

from examples in which the inpussare corrupted by a noise

7, i.e., the labels are given by

oo(S)=sgnWy- s+ 7)

which obeys

(47)

and » is assumed to have a smooth distribution. This case

falls under the category of a generic unrealizable rule. Ac¥or fixed large\, r converges exponentially to a fixed-point

cording to paper | OLGA should converge to the minimumvaluer* = p+/#/6 yielding
of the generalization error in the limit of large For an
optimal schedule oh (A=X\gn) €4 approaches,, as the 1 1

inverse ofyn. We now study this model for a noisgthat is

generated randomly by a Gaussian distribution

exp( — 5%/2p?).

dn
\/271'p2

The distribution of each of the input componergsis a

€4 Emin™~ —— —.
g min 6\/; \/X

2. Power-law schedule fok

(48)

l—-exp ——mmmMMm@
p( A(1-R2%+p?)

|-

(55

(56)

(57)

In order to obtain thaky— €y, vanishes in the limit of

infinite time, we assume the power-law schedule

Gaussian with zero mean and unit variance. We first discuss

the analytic theory in the largh limit. The generalization

error €4 is given as

(R) 2f+xD FOCD y| RYEP7
6 =
0 e P S INr=r
1 R
=—alCCO0$ ——=| .
™ V1+p?

From Eq.(50), we obtain for small +R

1-R
69( R)~ €mint p_7T

with

M a)=Aga”, where Kv=<l1

(58)

and analyze the dynamics of @)= J\(a@)[1—R(«@)]. If

v<1, the dominant terms in the differential equationifts)

reduce to
(49 dr 1 1 2r
de  \oa*\3ym 7P
Thus SR vanishes as
(50)
SR(a)~ I a "2
6\ho
and €4 converges ey, as
(51)

Eg( @) = €min~

(59

(60)

(61)
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Note that the coefficient does not depend on a ngise,
Optimal learning rate is obtained fer=1. In this case,
1

et

Thus, in order to keep(«a) from growing,\y has to satisfy

dr_

da

2

}\oaf

1 o

per (62

o< A (63

max.

where\y**=4/7p. From Eq.(62), we obtainsR vanishing
as 1A/a which is

2
SR(a)~ im P (64)
3(4_7Tp)\0) \koa
and ey converges as
(@) 2 ! (65)
Eql ) — €Enmin™ e
? "3 mNg(4—Tpho) Va
The optimal coefficienh§ is
Ny = 4 66
for which
V3p 1
eg( @) = €min~ - (67)

8 Va'

For v=1, if Ay does not satisfy Eq(63), then the second
term in Eq.(62) keeps growing while the first term remains
finite. Thus Eq.(62) can be written approximately,

dr r L b 63
da 2a No |’ (68)
Then 6R vanishes as
1 max,
SR(a)~——=a o 20 (69)
0
and e, converges tcy, in suboptimal rate which is
1 —(AT®2)\ )
€g( @) — €min~= a” o o), (70

7pVNo

The results of the numerical simulations of the model and the

theoretical asymptote are presented in Fig. 6.

E. Perceptron learning a committee-machine rule

Our final example of a perceptron learning an unrealizable
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FIG. 6. Generalization error of a perceptron with input noise.
The number of inputs is 50. The noigds generated from a Gauss-
ian distribution whose center is zero and standard deviation is 1.6.
The parametek is increased with time as= \ya, with A(=0.01.
The inset compares the asymptotic convergence of the algorithm
with theoretical predictioridashed ling

We further assume thatf- w)= N, wherek, | denote the
indices of hidden units and/f§ e RN.

From the analysis of paper |, we expect that the
asymptotic behavior is similar to the case of a perceptron
with input noise. In particular, for time-dependenthe best
convergence rate te,,;, is achieved folA (a) =\ga. In this
case,

1
€q(@) — €min® —=,
g( min \/E

a— o

(72)

as in the case of input noise. This expectation is borne out by
our numerical simulations, shown in Fig. 7. In the simulation
the distribution of each of the input componergsis a
Gaussian with zero mean and unit variance. They demon-
strate that with the above mentioned schedulexfdhe sys-
tem converges to the minimum ef; with the rate of Eq.

0.20
< o4f

0.15 £ I
R Jgo | P
& g %
| 0.10} 4
bo 0.0 . .
w 00 0001 0002 0003

1V
0.05¢
0.0 . L . "
0 1000 2000 3000 4000 5000
o

rule is the case of a rule generated by a committee machine

with three hidden units with weight vectors}, k=1,2,3.
Thus the outputry(s) generated by the teacher is

|

3

>, sgrwg:s)

k=1

oo(9)= sgr( (71)

FIG. 7. Generalization error of a perceptron learning a rule gen-
erated by a three hidden unit committee machine with 50 inputs.
The parameteh is increased with time as=\ga with \(=1.0.
The inset exhibits the asymptotic\l¢ convergence of this algo-
rithm. The dashed line is the best linear fit of the late part of the
simulations.
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(72). The analysis of these simulations depends on knowingvhich is the minimal number of hidden units that need to be
with accuracy the value of the minimal generalization error.corrected in order to change the signof

In the present casey is (4) To minimize the change which will correct the error,
each of the corresponding weight vectorsy,l
o o Rix+Ryy =1,... MypdaeiS updated according to the perceptron up-
ew=6fDfoH— 73 i
o(W) o oY ( 1T RR (73 dating rule,
w'=A W t—hg), (81)
—4fxDxwa fxDzH Ri X+ Ryy+ R3z
0 0 y 0 \/1—RE—R§—R3 ! whereA|=(1—N‘1h|2)‘1’2.
(74) (5) The above rule is implemented only if the local fields
of the candidates satisfy the bounded-change condition,
whereR, are the overlaps betweem andwf defined as which in the present case reduces to
1 Mupdate
Rk=Nw-w('§. (75) > [1—1-(hZN)]<1\N. (82)
=1

The optimal value ofeg is obtained whemw is in the same |f the bounded-change condition is not satisfigay, }
distance from all three teacher weight vectors. Minimizing— fw,1. For largeN, the bounded-change condition can be

with respect toR=R; yields simplified to
1 Mupdate
Rk:ﬁ forall k (76) E h|2< 2\, (83
=1
and €,,;,=0.162. see Eq(12).
In the following we present our main numerical results for
IV. OLGA FOR A COMMITTEE MACHINE the convergence of this algorithm. All the simulations are

performed with inputs that are drawn from Gaussian distri-
bution in which each component has a unit variance and zero
For a learning system with a committee-machine architecmean. The weight vectors of the teacher are chosen orthogo-
ture nal to each other, i.ewg-Wg =Ndy,. The initial student
vectors are generated randomly from a uniform distribution

A. Definition of the algorithm

M for each component of;, between—1 and 1, followed by a
o({w},s)=sg 21 sgnw;-s) |, (77 hormalizationw; - w,=N.
the trained parameters are thevectorsw,, whereM is an B. Realizable committee machine

odd integer bigger than 1. We will assume that they are kept o\ first example is the case where the teacher has the

normalized so thaty-w,=N at all times. The on-line energy g5 me committee-machine architecture as the studentMvith
function E is orthogonal weight vectorw,o. The optimal value ofey is
Nl zero when{w;}={w’}. Our numerical simulation results for
E({w, }{w}) =e({w/};9)+ 52 lw/ —w |2, (79 M=7 andM =19 are shown in Figs. 8 a_n(_j 9, respectively.
=1 The main result is that in all cases studiglifferent values
of M, ranging between 3 and 1the system converges to the

where{w/}={wf} and{w}={w]'"'} are the new and cur- global minimum ofey and the asymptotic convergence rate
rent weight vectors of the student, respectively. After eachg Zeroeg is

presentation of a new labeled example, based on the general
steps outlined in Sec. Il, the learning algorithm is as follows.
(D) If o=00, W =W. €~ (84)
(2) If o# o, then measuré¢h,} where
. where « is defined as the number of examples per weight.
h,Ew{"l-s“. (79 This convergence is identical with the result for the realiz-
able perceptron case. As in the perceptron case, the above
Note that sincer# o, the numbemM’ of local fields which  convergence is achieved even wheis fixed in time. How-
has “wrong outputs,” i.e.,oph;<0 obeys M+ 1)/2<M’ ever, unlike the perceptron case, we find here that only when
=M. the initial student weight vectors are in the neighborhood of
(3) Order the hidden units witargh, <0 according to the the teacher weight vectoeg converges to zero for all values
magnitude of|h| so that|h|<|h,4|. The candidates for Of A. To guarantee convergence from masandomly
updating are the units=1, . . . M,gaeWhere sampledl initial conditions the constant may need to be
larger than some lower boun@vhich may depend o).
M ypdas=M'— (M —1)/2, (80)  For instance, foM =3, we find thate, converges from most



2356 J. W. KIM AND H. SOMPOLINSKY PRE 58

1.0 0.25
10.8 0.20}
10-6 g 0.15
p W
10.4 '
o 0.10
{0.2
0.05}
. : . 0.0
0 5 130 15 20 0.00 , , : -
10°%0. 0.0 0.2 0.4 0.6 0.8 1.0

10%0l
FIG. 8. Generalization error of a committee machine vi\th o _ _ _
=7 vs the number of examples per weight The number of inputs FIG. 19. Generalization error of a committee machl_ne viith
is 150 andA=200. The dashed line indicates the corresponding=3 learning from examples generated by a teacher with the same

order parametep, Eq. (85). Inset exhibits the asymptotic conver- architecture but corrupted by uniform output noise, with a probabil-
gence. ity of mistakep=0.2. The number of inputs is 50. The parameter

is increased with time as=\ a2, with A;=9.0x 10" 1%, The inset

initial conditions to zero apparently for all valuesxfHow-  €xhibits the asymptotic & convergence.

ever, forM=5, we find that\ should be at least d (100 . )

to converge toe,=0. Otherwise depending on the initial results show thap changes substantially even in the plateaus
conditions the system may get stuck in a suboptimal regio®f €y Thus these plateaus do not correspond to genuine

of the weight space. This difference is indicative of the more/ixed points(even in the large limit). Similar phenomena
complex structure of the learning dynamics in the have been observed and discussed in other on-line learning

committee-machine case. algorithms for “soft” committee machine,12].

Another indication of this complexity is the existence of _ _ _ _
plateaus in the curve of; as shown in Figs. 8 and 9 for C. Committee machine with output noise

M=7 andM =9, respectively. An interpretation of this pla-  As an example for learning unrealizable tasks, we tried
teau in terms of spurious fixed points of the mean-field degytput noise for a committee machine. The teacher’s output

terministic dynamics is not clear, since as far as we can tels corrupted by a noise generated uniformly with probability
the macroscopic order parameters keep changing with timg, The output of the teacher is given as

although very little change happens in the valuesgf To

illustrate this important phenomenon we define an effective Mo ) -
order parametep as +sg ;1 sgnwp,-s) | with probability 1—p
0'0 MO
p=1M §|: R, (85 —sgr{ > sgrwo, - s)) with probability p.
=1

whereRy, is the overlap between the teachektd weight  In this problem,ey»=p, and the optimal weight vectors are
vector and the studentBh vector, R, ;=wqk- Wi /N, and  {w}={wg,}.
Ry, .1 denotes Ma{R;, ,R;, . .. Ry }. The temporal evolu- We performed numerical simulations of this problem with

tion of p alongside that ok, is shown in Figs. 8 and 9. These M =3 andN=50, and various values of théixed) param-
eter\. We find (results not showna residuale, which for

0.5 - 1.0 large N behaves as
0.4} ,x"” 10.8 eg—pmllx/i. (86)
With a power lawi we obtained our best results by choosing
106 Ma) as
p 2
20 194 A=Nga’, (87)

lo2 which yielded

0.0 . . : 0.0 €g—p~1lla (88)

0 5 10 15 20

as shown in Fig. 10.

The results exhibit a remarkably sharp dropepat «

FIG. 9. The same as in Fig. 8 but wit =19, the number of ~2.9x10°. Such a sharp change #) was not observed in
inputs is 50 and\=100. any of the many systems and target rules that we have simu-

1030
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lated. Finally, our simulations showed that in order to guar- wh=Awp 1. (94)
antee convergence ef; to e, from most of the initial con-

" — 10

ditions Ao must not be greater thar10 . For larger  rhe coefficienta is determined by the normalization condi-
values of\, the system may converge to a spurious fixed;g, Eq. (90). The bounded change condition is given as
point depending on the initial conditions.Nf«) is chosen to

increase less rapidly thaw® convergence t@,, is insensi- 3

tive to the prefactor. This behavior, which is similar to that 2 HWIn_WIn—1||2<2/)\_ (95)
shown above in the analytical solution of a single-layer per- =1

ceptron with output noisgEgs. (42)—(46)], is in accordance

with the general theory of OLGA in the case of output noise,|f this condition holds, we accept the new weight vectors.

and will be further discussed in the last section. Otherwise, we keep the current weight vectprd 1.
(2) h,>(h;+hg)/2. This can occur only ihg<<h,<h;.
V. OLGA FOR A WINNER-TAKES-ALL CLASSIFIER In order to correct the instantaneous error it is necessary to

update all three hidden units so that the new local fiélg$

. _ _ _ _should satisfy the condition
In this section we consider a winner-takes-all classifier

which can be modeled by a two-layer neural network with a

layer of M linear hidden units. The weightay,} from the h!=h.=h.=
input to hidden units are learned. Each hidden unit is con- voes
nected to its output unit by a weight fixed as one. The output

of the system is the index of hidden unitwith maximum  The updating rule for each weight vector which leads to Eq.

A. Definition of algorithm

hy+h,+h
e N (96)

local field h;, which is given as (96) is given by Eq.(93) for all three vectors. This update is
erformed provided the bounded change condition (B
o(s)=argmax(w-s}. 89 X satisfied. ’ e

Extending this algorithm for an arbitrary number of hid-
den units is straightforward. We again denote the label of the
new input ask, and assume that it does not agree with the
M winner of the current weights. The hidden units that are can-
> lwi|2=MN. (90)  didates for weight change are those with local fields that are
=1 greater tharh, . We order these units so that<h, _; for

Finally we assume that the labels on the examples are therh= 1.2, - . . ko. Using this rearrangement of indices(s")

selves generated by a classifier so gt 1, ... M. =1 whereasry(s") =ko. In order to determine how many of
For the sake of simplicity we first define OLGA for a theseko units should be actually updated we proceed as fol-

WTA with M=3. Let us assume that a new examgle lows. We first consider the possibility that oriy andh,

The number of units in the hidden layer is arbitrary. We will
adopt an overall weight normalization

generates the following local fields: need to be changed, in which case the change will be given
by Eq. (93) with h’=(h;+hy )/2. We thus comparé, to
N1 2 . 0 .
h=w""-s, (9D this value ofh’. If h,<h’, we accept the new weight vectors
- . . . W] andWE0 and for the rest, we multiply the current weight
where as _before is unit vector |n.th¢ gllrectlon of. Suppose vectors by the normalization factor A, ie.,
that the winner among these unitskisi.e., o(s") =k and the Awt—1 Apn L AW L If ho>h'. then the next can-
label on this example isro(s") =k,. We need to consider A

only the casek+k,, otherwise we keep the current weight didate vectors arerj, ws, andwy . The corresponding new
vectors. Let us assume that, sky; 1 andko=3. This means local fields areh’=(h;+h,+hy )/3. Now we compares
thath,>h;,h; and we want to make a minimal change in with this value ofh’. If hy<h’, we stop searching for a
the weights so that the new local fieftd will be the largest  candidate for updating and the new vectorswafe wj, and
field. We have to consider separately the following tWOwEO given by Eq.(93) and the rest of weight vectors are

cases. multiplied by the normalization factak. Otherwise, we con-

an((jlt)ohdze<c(r2;:k:] 3)b/2.tr|1re]: tsr;fnga;rixithsi\/?h; Increase e this procedure as described above until we find a unit
1By with an indexL which satisfiedh, ,;<h’, where

h,+h

L S p, (92) L

2 > hy+hy
=1

The local fieldh, need not be changed, since the above h'= L+l 97
change will leaveh, smaller tharh’ as desired. The updat-
ing rule which satisfies Eq92) is

h=hj=

The associated weight vector updates of all the units
WP:A[WF71+(h/_hI)§n] (93) hy, ...,.h ,hk0 are as in Eq(93) and the rest are obtained
by w'=Aw"*. Finally, we check the bounded-change con-
for 1I=1 and 3, whereas dition,
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0.20 convergence properties of the update rules for a variety of
target rules, both realizable and unrealizable. The analytical
results(for the single-layer perceptroms well as the exten-
sive numerical simulations confirm the main general predic-
tions of the asymptotic convergence of the deterministic
limit of OLGA that were derived in paper I.

The OLGA update rule for a single-layer perceptron is
related to other learning algorithms which were proposed for
the perceptron. In particular, if we take the zartimit of the
OLGA update rule, Eq(9), and drop the normalization con-
dition, we obtain the simple update rule

0.15}

P 010}

0.05}

0.0

0 160 260 300 Wn:Wnil_hn_lsn, Uohn_1<0, (100)
o
andw"=w""1if goh,_,>0. This update rule is one variant
of the “orthogonal projection” algorithm proposed as early
Rs 1954[18,21,23 for learning a set of linear inequalities.
More recently it was studied under the name “AdaTron al-
gorithm” [23]. The original analysis of the algorithm was
performed in the context of batch learning. More recently,
the performance of the AdaTron as an on-line algorithm for a
perceptron has been studieadt] analytically for a perceptron
learning a realizable rule with Gaussian distributed inputs,
If this condition does not hold for the above update we keep!Sing mean-field theory, similar to our treatment of Sec.
the current weight vectorsn ™ 1}. Il B. Our prediction of the asymptotic convergence of this
case, Eq.(24), agrees with the previous analygi24] (see
also Ref[13]).

It should be emphasized that the AdaTron on-line algo-

We have applied the above algorithm to simulate the casgithm is adequate only if the data are generated by a percep-
of a WTA learning examples generated by a teacher WTAfron. Our work focuses mostly on the problem of on-line
both having the same number of hidden uMisThe weight  learning of unrealizable rules. In such cases, the AdaTron
vectors of the teacher are chosen orthogonal to each otheslgorithm does not converge in general to the minimuragof
i.e., Wox-Wo,=N& . The initial value of each student even in the local sense. To ensure local convergence to the
weight is drawn from a uniform distribution of betweerl ~ minimum of ¢, one must use OLGA with the constraint im-
and +1. The weight vectors are then normalized so thatposed by on the above update withthat grows with time,
=M, lw[2>=MN. Each component of the inpatwas drawn  as was shown in this paper.
from a Gaussian distribution with zero mean and unit vari- Considering the update rule for the committee machine, it
ance. The numerical simulations used a fixed valuk ahd  should be noted that unlike the backpropagation algorithm,
M ranged between 3 and 19. An example of the simulation©LGA’s update rule is nonlocal. Although each updating
is shown in Fig. 11. The main result is that in all caseshidden unit follows a perceptron update rule for its weight
studied, the system convergesdg=0 and the asymptotic vector, only part of the units update their weights at each

FIG. 11. Generalization error of a WTA witkl =19 learning a
rule generated by the same architecture. The number of inputs
150 and\=1. The inset exhibits the asymptotical¢onvergence of
this algorithm.

M
> wP—w Y 2< 2/, (99
=1

B. Realizable WTA

convergence rate to zek is time step. The decision whether to update at(ad., the
bounded change criteripas well as the choice of the updat-
.~ 1 (99) ing units depend on the local fields of all the units, as follows
9 a’ from Sec. IV A. A similar nonlocality occurs for the WTA

network, Sec. V A. Deriving efficient OLGA update rules for

wherea is the number of examples per weight. The behaviometworks with more hidden layers is an interesting issue be-
of this system is similar to that of the realizable perceptroryond the scope of the present stuy@p].
shown in Sec. Il B. Not only is the asymptotic convergence The present paper and paper | show that the convergence
the same, but also the overall behavioregf Thus in both properties of OLGA in discrete output systems are similar to
casese, decreases smoothly and rapidly from most initial those of the stochastic gradient descent algorithm in smooth
conditions and this behavior does not seem to require pasystems. Both algorithms contain a learning rate parameter
ticularly largeX. This should be contrasted with the case ofwhich controls the size of the changes made at each step.
the realizable committee machine discussed in Sec. IV BVhen the learning rates are small the two algorithms spend
above. most of the time in the vicinity of the local minima of the
generalization error. Furthermore, by an appropriate power-
law decrease of the learning rate these local minima become
the true fixed points of the dynamics.

In this paper we derived explicit update rules that follow Both the on-line gradient descent algorithm and OLGA
from OLGA for a single-layer perceptron, a two-layer com- suffer from the same fundamental weakness. They do not
mittee machine, and a WTA classifier. We have studied thguarantee convergence to the global minimunepf Guar-

VI. SUMMARY AND DISCUSSION
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0.3 r=1 FIG. 13. ¢; of OLGA for a perceptron learning: a perceptron
P YN R I SRR PR LY R e Lot e rule with output noise with noise levefs p=0.3 (a), 0.4 (b), and
0.48 (c); a perceptron rule with a Gaussian input noise with stan-
A =100 dard deviation 1.6d); a committee-machine rule with three hidden
oo 0.2} 1.0 units (e). The simulationgsolid lineg are with 50 inputs, each has
w zero mean and a unit variance Gaussian distribution. The schedule
£ o) of A is A=0.01a%* The dashed lines are theoretical asymptotes
01l - except for(e), where it is the best linear fit. The theoretically evalu-
’ atedenn is p (8)—(c); 0.3222(d); 0.1623(e). The factor 1A in the
0 > 20 vertical axis is 1.5, 0.9, 0.6, 0.6, and 0.3, faj—(e), respectively.
1070
0.0 . . . T
0 1 2 3 4 pendent of the nature of the target rule or the distribution of
(b) 10*0 inputs. The results of the two papers demonstrate that this is

) ) indeed the case with OLGA. We have shown here that the
FIG. 12. Demonstration of the difference between the local aanpdate rules derived from OLGA vary according to the ar-

global convergence of OLGA in the case of a committee macmn%hitecture of the learning system. However, they are essen-
with five hidden units learning a rule generated by the same archi, . ' e
tecture. The number of inputs is 15@) The asymptotic 1 con- lt|aIIy independent of the target rules or the specific form of

o ; - i the input distribution. This is similar to the stochastic gradi-
vergence of generalization error wiki=1 when the initial weights . . .
of the student network are close to the teacher’s weightsinitial ent descent a"?’o”thm.' Evaluating the local gradient depends
overlaps of the corresponding student and teacher weight vecto n the system’s architecture but not on .the target rule. Fur-
were chosen to be 0.8(b) Generalization error when the initial thermore, no parameter has to be gs_peually tuned in order to
weights are far away from the teacher's weights. With1, the ~guarantee convergence tolacal) minimum of 4. In par-
algorithm does not converge to the global minimum. Wita100, ticular, for a generic unrealizable rule if one chooses a

the algorithm converges to the global minimum. The inset exhibitPOWer-law increase ok with a suboptimal power, i.e.,
the asymptotic X convergence with=100. N=2A\on” with 0<»<1 local convergence to a minimum of

€4 is guaranteed for all values of the coefficient To em-

anteeing global convergence requires in both cases the addPasize the important universality of OLGA we present in
tion of stochastic noise in the learning dynamics. In the cas&!9- 13 the simulation results of OLGA for a single-layer
of the stochastic gradient descent algorithm this amounts tBErCePtron leaming a variety of unrealizable rules. In all
using a(discrete timg Langevin dynamics, as studied in de- ¢35€S V/€ used the same schedule for namely, A
tail by Kushner26]. In the case of OLGA, one needs to use = 0-0I\"". As the figure shows, not only does the system
OLGA at finite temperature, as discussed in detail in paper ICONVerge toemy in all the cases but all the learning curves
The difference between local and global convergence ofXhibit the same power-law convergence, namelys emin
OLGA has been demonstrated here in the case of a commit:1/VA.
tee machine with five hidden units learning a rule generated |f optimal power-law convergence is sought then in the
by the same architecture. If the initial weights of the studen@€neric unrealizable case, one needs to chaeskn with
network are close to the teacher's weights, the system convo Smaller than an upper cutoffy®. In general this cutoff is
verges to the teacher’'s weights even wheis small[see unknown, since it depends on the target rule and input dis-
Fig. 12a)] as predicted for a general realizable rule in papettribution. Furthermore, even in this caseN§>\®, the
I. However, if the initial weights are far away from the glo- system still converges to the local minimum &f though
bal minimum, we find numerically that only whea>100  with a slower rate, as shown in the case of perceptron learn-
that system converges to the global minimysee Fig. ing data corrupted by input noi§see Eqs(68)—(70)]. These
12(b)]. properties are completely analogous to the behavior of the
An important condition that a viable learning algorithm on-line gradient descent algorithm with a power-law de-
must satisfy is that its applicability should be largely inde-crease of the learning rate. An exception is the case of output
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mean-field theory. Minimizing this function yields update

rules that are optlmgl in the sense that th_ey generate theAPPENDIX: MEAN-FIELD THEORY OF PERCEPTRON

fastest rate of reduction ig;. These calculations are inter- WITH OUTPUT NOISE

esting in that they provide a lower bound on the performance

of on-line learning algorithms. However, they cannot be con- The definition of the generalization is

sidered as interesting models of on-line learning. This is be-

cause of the obvious reason that the calculatioa,adnd its eg(W)={(O(—0g(5)a(W-9))))), (AL)

derivatives is possible only in those cases where the nature of

the target rule is known as well as that of the input distribu-where(( )) denotes average over the input distributiB(s)

tion. Even under these conditions, the mean-field calculagiven by Eq.(25) and( ) denotes here average over the

tions can be performed only in a restricted class of problemsoutput noise. Performing the average over the output noise

It is therefore unfortunate that optimal on-line learning cal-we obtain

culations are portrayed as on-line learnialgjorithms (see

Refs.[31] and[32]). Regrettably, misconceptions about the

role of analytical solutions of synthetic models are not un- eg(W)=(1-2p)(O(—oo(9)sgnw-))H+p. (A2)

common in the field of neural networks. The need to gain

theoretical insight into the performance of a model may re-

quire investigating its behavior in artificially simplified con- Performing the average over the input distribution yields

ditions. However, in order for the model to be interesting at

all, it should be well defined and applicable under realistic

conditions. -0 —Qy—RYy
The advantages of using OLGA in real world problems €(R,Q)=p+(1-2p) f DyH| —~
have to be judged relative to other commonly used super- - Vv1=R

vised on-line learning algorithms with similar network archi-

tectures, notably the backpropagation algorithm. The main + j ” DyH
advantage of OLGA over the back-propagation algorithm is -

in problems where the desired output is discrete, such as in

learning Boolean functions, or classification tasks. Back-

propagation, being a gradient-based method, requires that alhereQ andQ, are defined in Eqg28) and (26).

the neurong(except possibly the input onesave smooth In the largeN limit R and Q obey the differential equa-
outputs. Applying the backpropagation algorithm to thesejons

problems requires addirafd hocparameters such as the form
of the sigmoidal input-output functions of the neurons and

Qo+ Ry
1-R?

: (A3)

their gains. In addition, the smooth error function ugiea- d R

plicitly) in the training is different from the discrete measure da- E(h2>D—<h°h>D ,

of error used in gauging the performance of the network after (A4)
training. In contrast, algorithms such as OLGA allow us to

keep the discrete nature of the outp@émd possibly also d_Q:9<h2> —((u-9h)

hidden unit$ and are thus simpler to interpret in terms of the da 2 D D

underlying tasks. Whether this formal advantage can be

translated to practical advantages in learning classificatiowhere the subscrigd means averaging over the volumesof

tasks remains to be studied. which satisfies the bounded-change condition, @), and
In conclusion, we note that several important questiongr=n/N is the scaled time variable. Performing the average

regarding on-line learning are still open. Among them is theover the inputs, we obtain

entire issue of the global convergence properties of on-line

learning discussed above. Another issue is the on-line learn- dR

ing in systems with discrete valued parameters, such as net- 4, ~ —(1-2p)[f1(R,Q0,Q) +f1(R,—Qo,— Q)]

works with binary weights. Most on-line algorithms includ-

ing OLGA rely on the possibility of making small changes in —pfa(R,Qq,Q), (A5)

a single update hence they are inadequate for discrete valued

weights. where
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1 0
f1(R,Q0,Q)= Ef mdye* (y-Q?2%2

| [Byosa )H “Ry-A
Sy HAY ey
1-R? (Ry+A)?
+y exp —
27 2(1-R?

(AB)

and

1 +2IN 2[R
fZ(Ron-Q)Z\/T—Wf_ fﬁdye y-Q /2(§y2+Ay

(A7)
dQ
d_a:_(1_2p)[f3(RaQo,Q)—f3(R,—QO,—Q)]

_pf4(R1Q01Q): (As)
where
1 (o ,
f3(R,Q0,Q)= \/T_ﬂ-f— @Kdye_ (y-Q?%2
Q ~Ry-A
% Ey2+(u2—Qz)y)H(W
Ay p( (Ry+A)2
+—————exg —————
\/m 2(1_R2)
(A9)
and
1 (+2x )
=— — (Y—=Q)7/2
f4(R.Q0.Q) \/ﬁf\mdye
X %yzﬂuz—Qz)y). (A10)

Herey=h, A=Q,— QR, andu?=u-u. The above equations

hold for arbitrary value oh. To derive the larga limit, we
scale the variableR andQ as in Egs(29) and expand Egs.
(A5) and (A8) up to O(1/A%?). This results in Eqs(30) and
(31, for r(a) andq(a), respectively, with
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2 2.0p 1 y
P o7 L R
f(r) 7Te 3+(1 2p){J'0dyy2H \/F)
2
- \/:rg’z(l—e l’”)] , (A11)
o
G(r,q)=ie_‘95’2 Qo(1+2u*-2Q))
J
p 1 y
X §+(1—2p)fodyy2H($ 1
(1-2p)
_ \/E (1+u2—Qg)r3’2
X ?+Q0 (1-e” 1/2)}. (A12)

Thus the equation for determines its fixed value*, and
upon substituting in the second equation abayeis deter-
mined. In fact, from Eq(A12) one obtains

q*

o= Qo(1+3u?—3Q2)/(1+u?—Q3).  (Al3)

If N\ increases with time with the schedule of E&8) with
v=1, Eq.(40) becomes

dr _ f(r) Jr2r (A14)
de  \ga @

The fixed pointr* of the dynamics is obtained from
f(r*)
Vo

As can be seen from Fig. 4, X, is greater than upper bound
Amax, there exists no fixed point. We can obtaip,,, by
taking derivative of Eq(A14) with respect toa at r=r*
which yields

+2r*=0.

(A15)

[P

p (Al6)

max

If No=A\max, there is one fixed point. Ko<\ ax, there are
two fixed points, one is stable and the other is unstébde
Fig. 4).
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